Manufacturing the Future – Ensuring Prosperity and Security

Thomas R. Kurfess, Ph.D., P.E.
Chief Manufacturing Officer
Oak Ridge National Laboratory
kurfess@ornl.gov
+1-865-576-5733
Acknowledgements

Dr. Thomas Feldhausen
Staff Engineer, Hybrid Operations

Dr. Kyle Saleeby
Staff Engineer, Digital and Secure Manufacturing

Dr. Vincent Paquit
Group Leader, Energy Systems Analytics

This work was partially funded by the Department of Energy under contract DOE-EE0009046. This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the DOE.
Innovating technology faster than competition can copy

Vision: Rapid innovation, ensuring US dominance in advanced manufacturing

Mission: Identify, scale-up and integrate critical technologies for new and emerging advanced manufacturing sectors

- Hybrid manufacturing and Machine Tools
- Metal powder bed
- Large-scale polymers
- Digital discipline
- Metrology
Ubiquitous Sensing, Big Data & AI

- Embedded computing platforms
 - Arduino (Real-Time DSP)
 - Raspberry Pi (LINUX Platform)
 - Particle Photon (Cloud-Based Platform)

- Low cost / disposable / rapidly upgradable

- Sensors
- Sensors
- Sensors
Next Generation Architecture

- Secure, efficient, and real-time cloud operations
- Integration of REST/HTTP (request-reply) and MQTT (publish-subscribe)
 - Compatible with majority of Internet services
 - Allow machine-to-machine and machine-to-cloud communication
 - Access with no need of static IP address
- Integration of Web-APIs
 - Twilio, GoogleScripts, IFTTT, AWS Lambda (Alexa)
 - Shock monitoring system (HFDA)
- Fog computing and cloud computing
 - Machine utilization
 - Number of parts and cycle time computation
Big Data Generation – On Board Sensors

• Website for accessibility
 – List of machines with images as links
 – Review machine programs
 – Graphs plotted from near real time data
Hybrid Manufacturing

- Combination of additive (Deposition), subtractive (Machining), and inspection in a single machine tool
- Achieving Higher Productivity & Better Surface Finish
Hybrid Manufacturing

Easily Reconfigured

Various Feedstock

- Additive:
 - Blown-powder (~0.5 lb./hr.)
 - Wire-feed (~5 lb./hr.)
- Subtractive: Traditional machining

Lower Cost

Traditional: $90,000
Hybrid: $2,500
97% Material Cost Reduction

Hybrid Toolpath Planning

Chord Slicing - Autodesk

Non-Uniform Layer Slices – Open Mind
COVID19 Manufacturing Demonstrations at ORNL

- Face Shields
 - DeRoyal

- Test Tubes
 - Denso
 - Coca-Cola

- N95 Material
 - Hills Inc.

- Masks
 - DeRoyal
Face-Shield Mold
Face-Shield Mold
Feedback Control
Flow Architecture

Edge-driven system level control
- G-code drip feed process
- Parameter and macro modification

Modular components and interface access
- Standard, industry accepted protocols
- Goal, capabilities applicable to any system
Feedback Mechanisms for Closed-Loop Control

In-situ Process Modifications

Thermal Imaging
Thermal monitoring during print operations

Automated Geometric Inspection
Continuous inspection during cooling to monitor distortions over time
Feedback Mechanisms for Closed-Loop Control
Enhanced, Data-Driven Operations

Dynamic Dwell for Thermal Control
Fabrication of thin-wall structures with dynamic thermal control

Multi-Part Thermal Operation
- Fabrication of 2 independent components with thermally-driven closed-loop control architecture
- Allows hybrid fabrication of N independent components within single build space
The Building Blocks for Democratization

- Securely get the design and production information from the customer
- Collect production data for digital passport, and for process validation and improvement.
- Make the part in a secure fashion and ensure that it has a valid digital passport
- Enable legacy systems
- Leverage XR to ensure safe and secure operations
- Control/store critical information in a secure location
- Create the recipe, and it is not a unique recipe
- Enable next generation production operations
- Perhaps a new business mode...

The Ride Share Example

- Connecting the customer to the supplier
- Born qualified / digital passport
- Leveraging and extending the capabilities of a well-trained workforce
When am I Going to Lose my Job?
Back to the Big Picture

- Digital thread is a two-way street
 - Getting data for ML/AI
 - WFD capabilities (especially VR/AR/XR)
- Must deploy rapidly (faster than the competition)
 - Learning from production and field deployment
 - Generative design and manufacturing
 - Human providing the starting point
- Leverage Cloud/Fog/Edge for Compute/Communicate/Storage
- Must weave in cybersecurity
- Protection of proprietary and classified information
- Must support the ecosystem (SME/Middle class)

“In times of change, learners inherit the earth; while the learned find themselves beautifully equipped to deal with a world that no longer exists.” (Eric Hoffer 1902-1983)