Introduction

• The DOE Office of Indian Energy Policy and Programs (OI) requested ICF International (ICF) to identify areas within Tribal Lands that have a strong potential for renewable energy generation (solar and wind) as a source of Tribal revenue within the geographic area covered by the Western Electric Coordination Council (WECC) transmission grid.

• ICF used a combination of geospatial modeling and power flow modeling to identify sites where:
 – Conditions are optimal for solar or wind generation
 – Access to high-voltage transmission lines is favorable
 – Transmission upgrade costs would be minimal
Geospatial Analysis

Phase I: Identify Potential Sites

• Obtained GIS layers (e.g., wind/solar resources, transmission lines/substations, Tribal Lands, wetlands)

• Identify Tribal Lands that intersect with areas that are highly suitable for wind and solar generation
 – 4.5 kWh/m²/day and above for solar
 – Wind Power Class (WPC) 3 and above for wind (50 meters)

• Exclude areas that would not be suitable for commercial development (e.g., wetlands, forested areas, towns)

• Identify areas within Tribal Lands that meet the minimum size for commercial viability and are relatively flat (construction costs are lower)
 – Solar: minimum 42 acres, no more than 5% slope
 – Wind: minimum 2,500 acres, no more than 10% slope
Geospatial Analysis (ctd.)

Phase II: Identify most Promising Sites

- Conduct a least-cost path analysis to identify the 25 lowest-cost sites closest to any high-voltage WECC transmission line
 - Connect to substation with minimum 35kV
 - Use Least-cost path for connection:
 - Divide area into small polygons
 - Assign a “cost factor” to each polygon based on its geographic features (e.g., slope, land, wetland), characteristics (e.g., existing right-of-way on a road), while avoiding known sensitive areas (e.g., parks)
 - Find the “least cost” path based on the sum of all “cost factors” in all polygons in the path
 - Rank by cost per acre (could rank using other metrics such as total cost or cost per mile)
 - Consider existing and future (Foundational Projects) transmission lines
- No more than 3 sites per Tribal Land
Power Flow Modeling - Methods

• ICF performed a detailed power flow assessment for the top 25 solar sites and 24 wind sites (selected from the GIS analysis) to assess the ease of interconnection to the grid and the ability to dispatch from the site without violating transmission reliability criteria

• Using the GE PSLF power flow model, ICF examined the system operation under normal and emergency conditions and determined if dispatch from the site would cause thermal or voltage violations under steady state conditions
 – **Base Case**: ICF modeled the entire Western Interconnection, without any power injection from wind and solar farms, under normal (N-0) and contingency (N-1) conditions and recorded the substation voltages and power flows over the transmission lines and transformers (2015 selected to allow for appropriate lead times to develop the generation facilities)
 – **Scenario Cases**: ICF modeled 20 MW solar, 20 MW wind, and 100 MW wind power generation at the substations identified in the least-cost analysis; to compensate for the generation injection, ICF backed down existing generation in WECC proportionally
 – ICF monitored transmission line loadings and substation voltages to identify any line overloads or out-of-limit voltages under normal (N-0) and N-1 contingency conditions using the 2015 summer peak power flow case
Power Flow Modeling - Results

- At the 20 MW injection level (wind and solar), there were either minimal or no violations in the system. At 100 MW (wind), there were some thermal and voltage violations at several wind sites. However, all of these violations could be resolved either by proposed transmission upgrades in the western interconnection and other operating procedures used by system operators.

- This signifies that renewable generation facilities at the identified “top sites” could be developed with minimal transmission upgrade costs. However, radial connection from the generation facility to the transmission interconnection point would be the responsibility of the tribe and/or the developer.
Results – Wind Sites

- 192 potential sites were identified on 10 Tribal Lands
- The majority were on the Blackfeet, Fort Belknap, and Crow Lands
- 24 “top sites” were identified using least-cost methodology
- These sites were on all 10 Tribal Lands
Tribal Lands with Potential Wind Sites
Tribal Lands with Top 25 Wind Sites

[Map showing locations of tribal lands with top 25 wind sites, including Blackfeet, Rocky Boy's Fort Belknap, Northern Cheyenne, Fort Hall, Wind River, Duck Valley, and Navajo Nation.]
Results – Solar Sites

<table>
<thead>
<tr>
<th>Tribal Land</th>
<th>No. Potential Sites</th>
<th>Tribal Land</th>
<th>No. Potential Sites</th>
<th>Tribal Land</th>
<th>No. Potential Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navajo Nation</td>
<td>856</td>
<td>Fort Yuma</td>
<td>36</td>
<td>Zia</td>
<td>8</td>
</tr>
<tr>
<td>Wind River</td>
<td>314</td>
<td>Colville</td>
<td>34</td>
<td>Cocopah</td>
<td>7</td>
</tr>
<tr>
<td>Fort Hall</td>
<td>178</td>
<td>San Felipe</td>
<td>34</td>
<td>Tohono O’odham Nation</td>
<td>7</td>
</tr>
<tr>
<td>Crow</td>
<td>166 Nambe</td>
<td>25</td>
<td>Coeur d’Alene</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Gila River</td>
<td>137 Warm Springs</td>
<td>22</td>
<td>Ohkay Owingeh</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Blackfeet</td>
<td>134 Cochiti</td>
<td>17</td>
<td>Las Vegas</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Flathead</td>
<td>102 Santo Domingo</td>
<td>17</td>
<td>Sandia</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Nez Perce</td>
<td>87 Jemez</td>
<td>16</td>
<td>Torres-Martinez</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Colorado River</td>
<td>82 Pojoaque</td>
<td>16</td>
<td>Picuris</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Yakama Nation</td>
<td>63 Fort Belknap</td>
<td>13</td>
<td>Spokane</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Salt River</td>
<td>60 Uintah and Ouray</td>
<td>13</td>
<td>XL Ranch</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Isleta</td>
<td>50 Chemehuevi</td>
<td>12</td>
<td>Agua Caliente</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hopi</td>
<td>49 Fort Peck</td>
<td>12</td>
<td>Campo</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Northern Cheyenne</td>
<td>45 Zuni</td>
<td>12</td>
<td>Cabazon</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rocky Boy’s</td>
<td>42 Southern Ute</td>
<td>11</td>
<td>Fort Mojave</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Total = 2,720 Potential Sites

- More than 26,000 potential sites were identified – to reduce this to a manageable number for analysis, we selected only those sites within 2 miles of a substation.
- We subsequently identified 2,720 potential sites on 46 Tribal Lands.
- Nearly 70% were on seven Lands: Navajo Nation, Wind River, Fort Hall, Crow, Gala River, Blackfeet, and Flathead.
Tribal Lands with Potential Solar Sites
Tribal Lands with Top 25 Solar Sites
Detailed Maps – Solar Example
Detailed Maps – Wind Example
Discussion

- The “top sites” were identified using a high-level analysis with limited site-specific information. The maps provided by this analysis show other potential sites that might be more feasible if more detailed site-specific factors are considered.
- Costs are indicative costs based on an assumed 100 MW voltage level facility interconnection and associated generic cost factors – actual costs could be higher or lower.
- Costs do not consider factors such as potential upgrades to identified substations, transformers, financing or other engineering contingencies.
- “Top Sites” would be different if we ranked on other factors (e.g., total cost) or changed wind class or solar resource cutoffs.
- Power flow modeling analysis does not consider the impact of power injection simultaneously from multiple sites.
- Although suitable wind sites are somewhat limited, there are hundreds of suitable solar sites on many Tribal Lands. These are not limited to the desert Southwest.
- Although the WECC Foundational projects were included in the analysis, none of the “top sites” were linked to these future transmission lines.
- While the power flow modeling indicates that there are no technical limitations for power transfers from the “top sites,” it is possible that firm contracts may already exist on certain transmission lines in the region indicating the unavailability of additional capacity.