

Revenue Forecasting

Forecasting Best Practices

- Know the tax
- Clean the data
- Plot the data
- Use an appropriate forecasting approach
- Disaggregate if you can
- Evaluate your model and its estimation results
- Revisit and refine your assumptions

Know the Tax

Understand the tax being forecast

- Study the law
- Study the regulations
- Stay up-to-date with administrative and court rulings

Understand the structure of the tax

- The tax base exclusion, exemptions and deductions
- The net tax tax rates and credits

Understand collections procedures

These are what produce the revenue data

Clean the Data

Plot the Data

Use an Appropriate Forecasting Approach

Naive

Expert

Judgmental

Extrapolative

Trend

Univariate

Associative

Multivariate

Econometric

Disaggregate If You Can

More Reason to Disaggregate

Disaggregating to Understand What Drives Growth and Volatility

Growth and Volatility Estimates

Tax Base	Long Run Change	Short Run Change
Implied Sales Tax Base (1978-2019)	0.853	1.094
BEA State Personal Consumption Expenditures (1997 -	2017)	
Goods Net of Food for Off-Premises Consumption	0.784	1.105
Household Furnishings & Equipment	0.562	1.153
Recreational Goods & Vehicles	0.708	0.959
Gasoline & Other Fuel Goods	1.353	3.746
Implied Personal Income Tax Base (1978-2019)	0.933	1.699
SOI State Tax Stats (1996 – 2016)		
Federal Taxable Income	0.770	1.542
Wages and Salaries	0.691	0.929
Capital Gains	0.234	7.741

Evaluation of the Revenue Model

Predicted

Sales Tax Revenue

Predictors

Pers. Income

Sales Tax Rate

 $S = a + b_Y Y + b_T T$

S =Sales Tax Revenue

Y= Personal Income

T = Sales Tax Rate

In-Sample Evaluation of Model Results

Model Statistics

- R-square
- F-test
- Coefficients
- t-tests

Model Diagnostics

- Heteroskedascity
- Serial correlation
- Multicollinearity

Evaluating Potential Forecast Error

In-Sample Testing

- Use the entire sample
- Error=(Actual)-(Predicted)
- Mean Pct. Error
- Mean Absolute Pct. Error

Out-of-Sample Testing

- Use part of the sample
- Error=(Actual)–(Simulation)
- Mean Pct. Error
- Mean Absolute Pct. Error

Evaluating Actual Forecast Error

- Forecast Error
 - Error=(Actual)–(Forecast)
- Estimating Model Error and Variable Error
 - Forecast Simulation
 - Model error
 - Variable error

Refining Assumptions About Predictors

Predicted

Sales Tax Revenue

Predictors

Pers. Income*

Sales Tax Rate

Pct. Pop 65+

Housing Starts

$$S = a + b_Y Y^* + b_T T + b_P P + b_H H$$

S = Sales Tax Revenue

Y* = Personal Income Net of Transfer Payments

T= Sales Tax Rate

P = Population 65 and Older

H= Single-Family Housing Starts

Thank You

Jim Landers

Associate Professor of Clinical Public Affairs

Enarson Fellow

John Glenn College of Public Affairs

The Ohio State University

landers.1@osu.edu