Net metering and rate reforms for distributed solar

Galen Barbose

NCSL “Soaking Up the Sun” Webinar
September 28, 2017
In this presentation

• General landscape of net energy metering (NEM) and rate reforms for distributed solar

• Assessing the “cost shift” argument

• Potential impacts of rate reforms on solar adoption

• Outlining a broader set of strategies for addressing concerns about the financial impacts of distributed solar on utilities and their customers
NEM and rate reforms have proliferated

These reforms come in many shapes and sizes

- Increased fixed charges
- Time-varying pricing
- Demand charges
- Locational pricing
- Reduced compensation for grid exports
- Minimum bills
- Standby charges
- Value of solar tariffs
- REC ownership rules
The motivations for these reforms vary

- Cost-shifting/rate impacts
- Utility shareholder impacts
- Economic efficiency
Net energy metering represents one potential source of pressure on retail electricity prices...

NEM rate impacts at three penetration levels

- **Net-Metered PV: Impact at current penetration levels**, across a range of VoS assumptions, with purely volumetric rates
- **Net-Metered PV: Impact at projected 2030 pen. level**, across a range of VoS assumptions, with purely volumetric rates
- **Net-Metered PV: Impact at 10% penetration**, across a range of VoS assumptions, with purely volumetric rates

![Graph showing NEM rate impacts at three penetration levels](chart.png)

- **2015 cents/kWh**
...though other factors may ultimately be bigger drivers for future rate increases

Net-Metered PV: Impact at current penetration levels, across a range of VoS assumptions, with purely volumetric rates

Net-Metered PV: Impact at projected 2030 pen. level, across a range of VoS assumptions, with purely volumetric rates

Net-Metered PV: Impact at 10% penetration, across a range of VoS assumptions, with purely volumetric rates

Energy Efficiency: Impact of projected 2015-2030 EE savings, if avoided costs are valued at the same rate as solar

Natural Gas: Range in retail electricity price across 10th/90th percentile gas price confidence intervals for 2030

RPS: Impact in 2030 across low and high cost scenario assumptions

Carbon: Impact of CPP in 2030 across multiple studies, each considering multiple implementation scenarios

CapEx: Gross impact of electric-industry CapEx through 2030, across range of CapEx trajectories and WACC

Diagram:
- U.S. Average
- High-Pen.

Graph:
- 2015 cents/kWh
- 2015-2030 EE savings, if avoided costs are valued at the same rate as solar
- Range in retail electricity price across 10th/90th percentile gas price confidence intervals for 2030
- Impact in 2030 across low and high cost scenario assumptions
- Impact of CPP in 2030 across multiple studies, each considering multiple implementation scenarios
- Gross impact of electric-industry CapEx through 2030, across range of CapEx trajectories and WACC
Rate reforms can have significant impacts on the customer-economics of solar

Blue Bars are Bill Savings with Full NEM and Volumetric Rates

Notes: Based on project level data collected for Berkeley Lab's annual “Tracking the Sun” report. Bill savings calculated from EIA data for average retail electricity price by utility, with adjustments for usage tiers. Percentages refer to bill savings as a percent of total economic benefits to the customer.
And those impacts on solar customer-economics could, in turn, significantly throttle solar growth.

For example, a $50/month fixed customer charge, would reduce residential solar growth by ~90%.

Projected Cumulative U.S. Residential PV Capacity with Increased Fixed Charges

- Current rates
- $10/mo. increase
- $50/mo. increase
Retail-rate and NEM reforms are not the only tool in the toolkit

- Retail rate and NEM reforms generally seek to address concerns about utility ratepayer/shareholder impacts by reducing solar customer bill savings

→ Tends to be a zero-sum game

- Other strategies can address some of the same concerns, but potentially in a less contentious manner
Strategies for mitigating the impacts of distributed solar on utility ratepayers & shareholders

| Limit solar customer bill savings | • Higher fixed/demand charges
| | • Reduce compensation for grid exports |
| Facilitate higher value forms of deployment | • Time-varying and locational pricing
| | • Enhanced utility system planning
| | • Community solar
| | • Utility ownership and financing of distributed solar
| | • Distribution network operators |
| Broaden customer access | • Community solar
| | • LMI initiatives
| | • Utility ownership and financing of distributed solar |
| Align utility profits and earnings with distributed solar growth | • Decoupling
| | • Utility ownership and financing of distributed solar
| | • Performance-based incentives
| | • Distribution network operators
| | • Services-driven utilities |
Concluding thoughts

1. For **most** utilities, cost-shift from distributed solar is, and will continue to be, in the noise, simply by virtue of low penetration levels.

2. If policy objective is keeping rates low, other issues generally offer much bigger bang for the buck.

3. As a general matter, economic efficiency—i.e., prices that reflect long-run marginal social value—provides a more compelling rationale for rate and NEM reforms.

4. A broad array of potential solutions exist to addressing concerns about utility/ratepayer impacts from distributed solar—some of which may be less contentious.
For Further Information

Contact the speaker:
Galen Barbose, glbarbose@lbl.gov, 510-495-2593

Sign up for our email list
https://emp.lbl.gov/join-our-mailing-list

Follow us on Twitter
@BerkeleyLabEMP