PROTECTING THE NATION'S ENERGY INFRASTRUCTURE

Do you know your State's risks?

National Conference of State Legislators

Legislative Summit Taskforce on Energy Supply

Alice Lippert

Senior Technical Advisor

Office of Electricity Delivery and Energy Reliability (OE)

US Department of Energy

August 2, 2015

ENERGY INFRASTRUCTURE PROTECTION AND RISK ASSESSMENT

Protecting energy infrastructure requires:

- Knowing the specific threats and hazards affecting infrastructure to protect against
- Prioritizing resources available for infrastructure protection and resilience based on the likelihood of occurrence and potential consequences of threats and hazards

Risk assessment can help decision makers better understand threats, hazards, vulnerabilities, and consequences and make more informed decisions on how to best protect energy infrastructure and assets

STATE ENERGY RISK ASSESSMENT CONSIDERATIONS

- A growing awareness of the ever-emerging threats and hazards to energy systems and infrastructure
- The interdependent nature of energy and other lifeline infrastructures
- The complex challenge of information and data sharing and coordination among federal, state and local agencies, asset owners and operators, and the private sector
- Limited resources (staff, budget, and time) for development of risk assessment processes and capabilities at State level
- Improving States' understanding of risk assessment and energy system requirements and capabilities enables States to prepare for, mitigate against, respond to and recover from energy system disruptions.

STATE ENERGY RISK ASSESSMENT INITIATIVE AND STRATEGY

Key Goals and Objectives:

- Increase States' awareness of energy infrastructure risk considerations to better prepare them to make more informed decisions
- Provide a suite of scalable, easily-applied analytical tools, methods, and processes to enable States to better assess risks to energy systems and assets
- Objectives:
 - Determine State energy risk assessment needs
 - Assess current practices in State-level energy risk analysis
 - Engage with key stakeholders (across entire risk analysis development cycle) to enhance information sharing and collaboration

INITIATIVE ACCOMPLISHMENTS AND UPDATES

State Energy Risk Assessment Working Group

- Creation of a risk assessment and analysis taxonomy
- Energy risk projections for the 2015 hurricane season
 - DOE- NASEO Webinar
- NGA Threat Hazard Identification Risk Assessment (THIRA) Survey
 - Showed that many States have used THIRA but that more detailed risk assessment capabilities are also desired
- Continued input/feedback on State risk assessment needs

State Energy Risk Profiles

- Profiles present most common threats and outages impacting energy infrastructure
- Prepared for all 50 States and District of Columbia

State Energy Risk Assessment Workshop

- Denver, CO April 28-29, 2015
- Outreach to State Agencies and Association members
 - Upcoming Summer and Fall Meetings

STATE ENERGY RISK PROFILES

Profiles include:

- Information on State energy facts
- Overview of hazards and economic property loss
- Causes of disruptions and outages by energy sector
- Infrastructure maps
- List of data sources and references used to create the profiles
- http://www.energy.gov/oe/state-energy-risk-assessmentinitiative-state-energy-risk-profiles

WHAT NATURAL DISASTERS CAUSE THE MOST DAMAGE?

- Data from NOAA Storm Events Database analyzed for 1986 to 2014.
- Above ranking reflects the significance of extreme weather events, such as:

Тор	Top-Five Natural Disasters and Weather Extremes by PADD (1986-2014)					
Rank by Property Damage	PADD 1 (East Coast)	PADD 2 (Midwest)	PADD 3 (Gulf Coast)	PADD 4 (Rocky Mtns)	PADD 5 (West Coast)	
1	Flood	Flood	Hurricane	Thunderstorm & Lightning	Wildfire	
2	Hurricane	Thunderstorm & Lightning	Drought	Flood	Thunderstorm & Lightning	
3	Tornado	Drought	Flood	Wildfire	Flood	
4	Winter Storm & Extreme	Tornado	Thunderstorm & Lightning	Tornado	Winter Storm & Extreme	
5	Thunderstorm & Lightning	Winter Storm & Extreme	Tornado	Winter Storm & Extreme	Earthquake	

- The New England Flood of October 1996 and Mid-Atlantic United States flood of 2006 (East Coast).
- The Great Flood of 1993 and the 2011 Mississippi River floods (Midwest).
- Hurricanes Ivan, Katrina, Rita, etc. in the Gulf Coast (Gulf Coast).
- Hail storms in Colorado and Wyoming (Rocky Mountains).
- California wildfires of October 2007 (West Coast).

WHAT HAZARDS POSE THE GREATEST THREATS TO THE ELECTRIC <u>TRANSMISSION</u> GRID?

- Each region appears to be vulnerable to different hazards.
- Greatest impact to the East Coast and Gulf Coast due to hurricanes.

To	Top-Five Causes of NERC-Reported Electric Transmission Outages (1992 - 2009)						
Rank by Number of Customers	/	PADD 2 (Midwest)	PADD 3 (Gulf Coast)	PADD 4 (Rocky Mtns)	PADD 5 (West Coast)		
1	Hurricane / Tropical Storm	Thunderstorm	Hurricane / Tropical Storm	Transmission Line Faults and Overloads	Transmission Line Faults and Overloads		
2	Complete Electrical System Failure	Complete Electrical System Failure	Thunderstorm	Fuel Supply Deficiency	High Winds		
3	Ice Storm	Winter Storm	Faulty Equipment / Human Error	Faulty Equipment / Human Error	Thunderstorm		
4	Thunderstorm	Ice Storm	Transmission Line Faults and Overloads	Unknown Cause	Faulty Equipment / Human Error		
5	High Winds	High Winds	Heat Wave	Physical Impact / Attack	Heat Wave		

- The Midwest is subject to extreme weather such as storm and high winds.
- Transmission line faults or overloads most-significant threat in the Rocky Mountains and Plains and West Coast, due to major transmission paths with high congestion.

WHAT ARE THE MAJOR THREATS TO ELECTRIC <u>DISTRIBUTION</u>?

- 90% of customer outage-minutes are due to events which affect local distribution systems.
- Weather are the predominating events for East and Gulf Coasts
- In the Midwest, most power outages are caused by damage from trees.

Top-f	Top-Five Causes of Electric Distribution Outages by PADD (2008-2013)						
Rank by Number of Incidents	PADD 1 (East Coast)	PADD 2 (Midwest)	PADD 3 (Gulf Coast)	PADD 4 (Rocky Mtns)	PADD 5 (West Coast)		
1	Weather / Falling Trees	Weather / Falling Trees	Weather / Falling Trees	Faulty Equipment / Human Error	Faulty Equipment / Human Error		
2	Faulty Equipment / Human Error	Faulty Equipment / Human Error	Faulty Equipment / Human Error	Weather / Falling Trees	Weather / Falling Trees		
3	Unknown	Unknown	Unknown	Unknown	Unknown		
4	Vehicle Accident	Animal	Vehicle Accident	Vehicle Accident	Vehicle Accident		
5	Animal	Vehicle Accident	Animal	Animal	Planned Outage		

- Faulty equipment / human error tops the list for the Rocky Mountain and West Coast regions.
- "Unknown" events include those with "multiple initiating" causes.
- Outages are also caused by vehicles accidents.

WHAT ARE THE MAJOR THREATS TO PETROLEUM TRANSPORT?

2

3

4

Outside Force

Material /

Weld Failures
Miscellaneous

/ Unknown

Equipment

Failure

Top-Five Causes of Major Rail and Truck Incidents Involving Crude Oil and Petroleum Transport by PADD (1971 - 2014)

Rank by						
Economic	PADD 1	PADD 2	PADD 3	PADD 4	PADD 5	
Loss	(East Coast)	(Midwest)	(Gulf Coast)	(Rocky Mtns)	(West Coast)	
1	Collision /	Collision /	Collision /	Collision /	Collision /	
1	Rollover	Rollover	Rollover	Rollover	Rollover	
2	Miscellaneous	Miscellaneous	Miscellaneous	Miscellaneous	Miscellaneous	
2	/ Unknown	/ Unknown	/ Unknown	/ Unknown	/ Unknown	
3	Natural Forces	Natural Forces	Natural Forces	Incorrect	Natural Forces	
3				Operation		
4	Incorrect	Incorrect	Incorrect	Natural Forces	Incorrect	
4	Operation	Operation	Operation	ivatural Forces	Operation	
5	Material /	Material /	Material /	Material /	Material /	
3	Weld Failures	Weld Failures	Weld Failures	Weld Failures	Weld Failures	

- Collision / Rollover is a vehicle accident in which a vehicle tips over onto its side or roof.
- Miscellaneous / Unknown denotes incidents in which the cause is unknown or has multiple causes (e.g., Incorrect Operation and Corrosion).

- Outside Force damage results from some external force such as excavation activities ("thirdparty" damage).
- Natural Force Damage occurs as a result of naturally occurring events such as flooding, earthquakes, and lightning.

Pipelines by PADD (1986 - 2014)						
Rank by Economic Loss	PADD 1 (East Coast)	PADD 2 (Midwest)	PADD 3 (Gulf Coast)	PADD 4 (Rocky Mtns)	PADD 5 (West Coast)	
1	Corrosion	Material / Weld Failures	Outside Force	Natural Forces	Outside Force	

Corrosion

Natural Forces

Material /

Weld Failures

Miscellaneous

/ Unknown

Outside Force

Corrosion

Incorrect

Operation

Material /

Weld Failures

Corrosion

Outside Force

Miscellaneous

/ Unknown

Incorrect

Operation

Miscellaneous

/ Unknown

Corrosion

Incorrect

Operation

Material /

Weld Failure:

CAUSES OF PETROLEUM REFINERY DISRUPTIONS

Top-	Top-Five Causes of Petroleum Refinery Outages by PADD (2003 - 2014)						
Rank by Number of Incidents	PADD 1 (East Coast)	PADD 2 (Midwest)	PADD 3 (Gulf Coast)	PADD 4 (Rocky Mtns)	PADD 5 (West Coast)		
1	Equipment Failure or Damage	Maintenance / Turnaround	Equipment Failure or Damage	Fire and/or Explosion	Maintenance / Turnaround		
2	Maintenance / Turnaround	Equipment Failure or Damage	Operational Upset or Process Problem	Maintenance / Turnaround	Operational Upset or Process Problem		
3	Operational Upset or Process Problem	Operational Upset or Process Problem	Maintenance / Turnaround	Loss of Electric Power or Other Utility Service	Equipment Failure or Damage		
4	Loss of Electric Power or Other Utility Service	Cause Not Specified	Loss of Containment / Flaring	Equipment Failure or Damage	Loss of Containment / Flaring		
5	Cause Not Specified	Fire and/or Explosion	Cause Not Specified	Cause Not Specified	Loss of Electric Power or Other Utility Service		

- Similar causes for petroleum refinery disruption observed throughout the U.S.
- The U.S. Gulf Coast has some of the world's most sophisticated refineries contains much equipment that can fail
- A turnaround is a planned break in production so that maintenance may be performed - most refineries go through a turnaround every three to five years

WHAT ARE THE MAJOR THREATS TO NATURAL GAS TRANSPORT?

Top-Five	Top-Five Causes of Major Incidents Involving Natural Gas Distribution and Transmission Pipelines by PADD (1984 - 2014)						
Rank by Economic Loss	PADD 1 (East Coast)	PADD 2 (Midwest)	PADD 3 (Gulf Coast)	PADD 4 (Rocky Mtns)	PADD 5 (West Coast)		
1	Miscellaneous / Unknown	Outside Force	Outside Force	Outside Force	Material / Weld Failures		
2	Outside Force	Miscellaneous / Unknown	Natural Forces	Miscellaneous / Unknown	Outside Force		
3	Natural Forces	Natural Forces	Miscellaneous / Unknown	Natural Forces	Miscellaneous / Unknown		
4	Corrosion	Corrosion	Corrosion	Material / Weld Failures	Natural Forces		
5	Material / Weld Failures	Incorrect Operation	Material / Weld Failures	Equipment Failure	Corrosion		

- Outside Force damage is generally the primary cause of disruption to the natural gas pipeline network.
- Natural Forces such as flooding and lightning is also a major cause.
- Corrosion of natural gas pipelines is less of a concern compared with petroleum pipelines.

STATE ENERGY RISK ASSESSMENT WORKSHOP

Held April 2015 in Denver, CO

Topics Covered:

- Risk frameworks and approaches
- Methods for predicting electrical outages and analyzing petroleum data
- Grid threats and cyber-security considerations
- Demonstrations of "best of breed" risk assessment tools and methods available for States and localities
- Federal risk assessment tools such as DHS' Threat and Hazard Identification and Risk Assessment (THIRA) and the Regional Resiliency Assessment Program (RRAP)
- Facilitated open discussion among attendees regarding needs and challenges for State-level energy risk assessment

STATE ENERGY RISK ASSESSMENT WORKSHOP

Key Takeaways:

- Better detail, resolution, and access to data, definitions, and tools is needed
- Better collaboration and information sharing is needed
- Resources are scarce with which to implement risk assessment
- More case studies and real-world examples are needed
- More risk assessment education and training opportunities are needed
- Greater communication of risk between stakeholders and decision makers and the public is needed
- http://www.naseo.org/risk-assessment-workshop

NEXT STEPS

- Organize additional webinars and presentations for State Energy Risk
 Assessment Working Group and N-group members
- Provide additional risk assessment resources and information to stakeholders based on feedback provided at workshop
- Develop a Risk Tool Kit
- Engage energy infrastructure decision makers more directly and help facilitate risk communications among policy makers, State energy offices, utility commissions, and emergency management/homeland security agencies.
- Continued engagement with respective energy infrastructure stakeholders

RISK CONSIDERATIONS FOR STATES

- What are the biggest challenges to protecting energy infrastructure in your State?
- What infrastructure issues are of highest priority in your State?
 - How was it determined to make them high priority?
- How has risk assessment been utilized in your State?
- Is consideration of risk used when making decisions on energy infrastructure protection and resilience in your State?
- What would be most helpful to legislators, in your State, to increase awareness of risk assessment considerations relating to energy infrastructure?

THANK YOU!

Alice Lippert, DOE/OE

Alice.Lippert@hq.doe.gov

