Safe Transport of Hazardous Materials by Rail

National Conference of State Legislatures
Spring Forum of the NCSL Standing Committees
Standing Committee on Transportation
Marriott Wardman Park, Washington, DC
April 24, 2009
Company Overview

- Over 2.2 million product shipments, worldwide
- 150 manufacturing sites in 37 countries
- 3,200 products to 45,000 customer locations in 160 countries
- 20% of shipments involve an international border crossing with Customs clearance:
 - 7th largest exporter from USA
 - 64th largest importer to USA
- Two-thirds of volume by land / one-third by marine
- Largest bulk chemical shipper in North America
- 26,000 railcars – 2nd largest private fleet in the world
- 80% not hazardous / 1% highly hazardous
- 99.97% incident-free across all modes
Our Position

• The transportation of hazardous materials is vital to our nation’s economy and critical infrastructure
• Our industry’s record for safely transporting hazardous materials is excellent
• Existing safety, security and risk management programs provide a solid foundation for addressing public concerns
• New initiatives are being implemented to further improve rail safety and security
• Continued collaboration between government and industry is essential
Rail Hazmat Transportation in Perspective

• Roughly 34 million freight rail shipments each year:
 • 1.6 million (5%) hazmat
 • 100,000 (0.3%) TIH
• Three materials account for 90% of TIH shipments:
 • Anhydrous ammonia (45%)
 • Chlorine (35%)
 • Ethylene oxide (10%)
• Rail is the safest and most efficient way to transport large volumes, long distances over land
Why We Need TIH Materials

• Anhydrous ammonia:
 • Nitrogen fertilizers – an essential crop nutrient (70%)
 • Industrial applications (30%)
• Chlorine:
 • 98% of drinking water systems
 • 93% of pharmaceuticals
 • 86% of crop protection chemicals
 • Affordable, energy-efficient building materials
• Ethylene oxide:
 • Aircraft deicers, automotive anti-freeze and brake fluids
 • Soaps, cosmetics and pharmaceuticals
Why We Need to Transport TIH Materials

- Essential building block materials
- Manufacturing efficiencies and economies of scale
- Diverse users and end-use applications
- Geographically dispersed producer and user operations – reflecting 100 years of evolution:
 - Commodities near feedstock and low-cost energy
 - End-use products near consumers
- Transportation economics and sustainability
A Safe and Secure Rail Transport System

• Over one million hazardous material shipments each year, with 99.998% reaching their destination without incident
• A robust framework of federal laws, regulations and initiatives for rail safety and security, including the following recent actions:
 • The 9/11 Commission Act of 2007 (PL 110-53)
 • The Rail Safety Improvement Act of 2008
 • Department of Transportation:
 » Interim standard for TIH tank cars
 » Rail hazmat routing rule
 • Department of Homeland Security:
 » Rail transportation security rule
 » Tank car vulnerability study
 » GPS tracking program
A Commitment to Continuous Improvement

- Expanding the TRANSCAER® program
- Improving shipment visibility and situational awareness
- Developing the Next Generation Rail Tank Car
- Improving chemical supply chain design
- Eliminating non-accident releases
- Deploying communication-based train control / anti-collision systems
- Reducing non-essential dwell time in High Threat Urban Areas
- Improving rail operations safety:
 - Reducing “human factor” causes of accidents
 - Improving track maintenance and inspection
 - Enforcing risk-based speed limits and operational controls
 - Reducing dark territory by expanding use of signal technology
 - Continuing the emphasis on grade crossing safety
Improving Chemical Supply Chain Design

- A long-term business strategy for improved safety, security and sustainability
- Methods:
 - Avoid new, long-term shipments of highly hazardous materials
 - Alternate sourcing through exchanges, swaps, contract manufacturing and purchases
 - Alternate modes of delivery (e.g. pipeline vs. rail)
 - Facility rationalization / optimization of producer-user operations
 - Business rationalization / customer selection-qualification
 - Conversion to less hazardous derivatives before shipment

Proof Point:
As the world’s largest chlorine producer, Dow has achieved an 80% reduction in chlorine rail shipments since 1999
Priorities for Government

• Emphasize risk-based, performance-oriented solutions
• Build on successful private sector initiatives and leverage industry “best practices”
• Promote strong public-private partnerships and stakeholder collaboration
• Provide adequate funding to enable DHS and DOT to carry out current mandates
• Foster innovation, research and development to maximize the benefits of technology
• Establish incentives to encourage positive voluntary behavior:
 • Grants to support local emergency responder training
 • Tax incentives to promote facility and supply chain modifications
 • Public infrastructure projects to reduce grade crossing risks
• Ensure proper balance to achieve a prudent level of safety and security, without unduly hindering productivity, trade and economic growth
• Ensure strong, even-handed enforcement of rail safety and security regulations
Thank You!

Henry Ward
Director, Transportation Safety & Security
The Dow Chemical Company
2020 Dow Center, Midland, MI 48674
989-636-4332 (o); 989-948-5861 (c)
heward@dow.com