Utilizing the LaBarge experience
to support the global development of CCS

Michael Parker, P.E.
Technical Advisor
Safety, Health and Environment
ExxonMobil Production Company
June 29, 2009
CCS – a promising option
challenges in commercializing CCS

- large scale demonstration of integrated component technologies
- technology improvements to reduce capital cost and energy intensity
- sound legal and regulatory framework
 - stable economic basis
 - property rights/access
 - long term site responsibility
- recognition of scale
 - rivals existing oil and gas production infrastructure.
- LaBarge experience illustrates the challenges, opportunities, and progress
LaBarge operations

• history
 – First well tested by Mobil 1963
 – First well tested by Exxon (Humble) 1969
 – Delineation wells drilled by Exxon 1981
 – Plant site construction began 1984
 – First production 1986

• LaBarge project unique features
 – Lowest hydrocarbon gas commercially produced in industry
 – First and largest CO₂ sales system in the Rockies
 – Largest gas sweetening plant in the world
 – Largest helium recovery plant in the world (25-30% of world supply)
 – Largest longest sour gas pipeline in the world
 – Largest sour gas injection facility in the world
carbon dioxide pipeline system
CO₂ management at LaBarge

• CO₂ sales for EOR began with plant start-up in 1986
 – current capacity 230 Mcfd
 – post expansion capacity 340 Mcfd (mid 2010)

• CO₂ Injection with sour gas 25 Mcfd

• vast majority of CO₂ sales utilized for EOR
 – demonstrates IEA “early opportunity” model for CCS – Capture and EOR
 – current sales capacity ~ 5 Mt/yr (equivalent to 1.1 M vehicles)
 – post expansion sales ~ 7 Mt/yr (equivalent to 1.6 M vehicles)

• Co-gen facility reduces CO₂ emissions by ± 50 % compared to purchased power
 – ExxonMobil patented low BTU combustion technology

• Controlled Freeze Zone™ commercial demonstration
experience with CCS technologies

Shute Creek, Wyoming

Shute Creek Gas Plant

Gas Composition
65% Carbon dioxide
22% Methane
7.4% Nitrogen
0.6% Helium

CO₂ Compression

CO₂ Metering

Wellfield

Gas Composition

Black Canyon Processing Facility

Shute Creek Gas-Treating Facility

LPG 5 MCFD
Methane 115 MCFD
Helium 4 MCFD
CO₂ 230 MCFD
Controlled Freeze Zone (CFZ™) separation

- Controlled Freeze Zone (CFZ™) – single step process for separation of CO₂
 - ExxonMobil developed technology, patented in 1986
 - commercial scale, $100M demonstration under construction at LaBarge, WY, 2010 start-up
 - lower cost process that may make CCS a more practical option for CO₂ from natural gas
research and development partnerships

- sponsored research
 - CO$_2$ReMoVe, GCEP, Georgia Tech, IEA GHG, MIT CSI, University of Texas
- program support
 - USDOE Regional Program Partner, Southeast and Southwest programs
 - University of Wyoming data sharing and research collaboration
- founding member of the “Global CCS Institute”
University of Wyoming collaboration

• **project motivation**
 – long term viability of WY energy resources
 – utilization of potential WY CO₂ storage resources

• **study scope**
 – geologic characterization
 – laboratory experiments
 – geologic modeling
 – preliminary capacity assessments

• **ExxonMobil support**
 – E&P experience supports project goals
 – knowledge/experience sharing
 – work “already done”
 – sharing opportunities
 – geologic/geophysical data bases and integration with models (PETREL)
 – geochemical data and interpretation
 – samples – cores and produced fluids
 – access to facilities and operations
CCS – a promising option

- CCS - a potentially powerful tool to address risks posed by rising GHG emissions
- widespread deployment entails a sound legal and regulatory framework
- long term, CCS must compete economically with other GHG mitigation technologies
- oil and gas industry, ExxonMobil in particular, can provide relevant support and expertise
- collaborative effort needed to reach our mutual goal of reduced emission

Adapted from Summary for Policy Makers, IPCC Special Report on CO2 Capture and Storage, 2005
Questions?