Characterization...
Simulation...
Validation...
Company Overview

AEP’s Generation Fleet
>38,000 MW Capacity

- Coal/Lignite 66%
- Nat. Gas/Oil 22%
- Nuclear 6%
- Pumped Storage/Hydro/Wind 6%

5.2 million customers in 11 states
Industry-leading size and scale of assets:

<table>
<thead>
<tr>
<th>Asset</th>
<th>Size</th>
<th>Industry Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Generation</td>
<td>~38,300 MW</td>
<td># 2</td>
</tr>
<tr>
<td>Transmission</td>
<td>~39,000 miles</td>
<td># 1</td>
</tr>
<tr>
<td>Distribution</td>
<td>~213,000 miles</td>
<td># 1</td>
</tr>
</tbody>
</table>
Site Characterization and Feasibility Study
The foundational work for AEP’s CCS program began in 2003

Seismic Survey
Summer 2003

Drilling and Testing
2003 - 2005

Modeling and Analysis
2006 - 2007

More than $7.5 million for site characterization and feasibility assessment conducted by Battelle under funding by DOE and others
It’s All About Three Things...

Location, Location, Location

- **Permeability much less than 0.01 mD**
 - Shale with Extremely Low Permeability
 - Forms Good Caprock

- **Permeability 10 – 100 mD**
 - Sandstone with Medium Permeability
 - Forms Good Host Reservoir
 - Cost Medium

- **Permeability 100 – 1,000 mD**
 - Sandstone with High Permeability
 - Forms Excellent Host Reservoir
 - at Low Cost

- **Pore**
Rose Run Sandstone Core Analysis

Rose Run Sandstone - 116 ft total thickness, ~30 ft porous sandstone.

Full Rock Core 7762-7772

Hydraulic Core Tests 7763.5 ft
Lithology = Sandstone
Density = 2.68 g/mL
Porosity = 9.1%
Permeability = ~ 36 mD

Full Rock Core 7772-7782

Hydraulic Core Tests 7775 ft
Lithology = Sandstone
Density = 2.64 g/mL
Porosity = 10.4%
Permeability = ~ 49 mD

Full Rock Core 7818-7828

Hydraulic Core Tests 7819 ft
Lithology = Sandstone
Density = 2.63 g/mL
Porosity = 11.5%
Permeability = ~ 36 mD
Approaches to CO$_2$ Capture

- **Post-Combustion Capture**
 - Conventional or Advanced Amines & Chilled Ammonia
 - Amine technologies commercially available and used in other industrial applications
 - High parasitic demand
 - Conventional Amine ~ 28-32%, Chilled Ammonia target ~ 15-22%

- **Modified-Combustion Capture**
 - Oxy-coal
 - Technology not yet proven at commercial scale
 - High parasitic demand, >25%, due to large oxygen demand and high flue gas recirculation

- **Pre-Combustion Capture**
 - IGCC with Water-Gas Shift : CO+H2O => CO2+H2
 - Process well-suited for CO2 capture - Capture occurs prior to combustion
 - Parasitic demand for CO2 capture - lower than Post-combustion or oxy-coal options
 - IGCC plant costs higher than Pulv. Coal, CO2 capture cost lower than Pulv. Coal
Reactions:
\[\text{CO}_2 (g) \rightleftharpoons \text{CO}_2 (aq) \]
\[(\text{NH}_4)_2\text{CO}_3 (aq) + \text{CO}_2 (aq) + \text{H}_2\text{O} \rightleftharpoons 2(\text{NH}_4)\text{HCO}_3 (aq) \]
\[(\text{NH}_4)\text{HCO}_3 (aq) \rightleftharpoons (\text{NH}_4)\text{HCO}_3 (s) \]
\[(\text{NH}_4)_2\text{CO}_3 \rightleftharpoons (\text{NH}_4)\text{NH}_2\text{CO}_2 + \text{H}_2\text{O} \]
AEP CCS Validation Facility
1,300 MWe Mountaineer Plant, New Haven, WV

- **Scale:** 20 MWe slipstream
 - ~1.5% of power plant flue gas

- **Cost:** >$100M
 - Project initiated in September 2007
 - Funding by AEP, Alstom, RWE, & EPRI

- **Capture:** Alstom Chilled Ammonia Process
 - Ammonium Carbonate/Bicarbonate Reaction
 - >85% CO₂ capture rate

- **Sequestration:** Deep saline formation storage
 - ~100,000 tons CO₂ per year
 - ~1.5 miles below the plant surface

- **First CO₂ Capture:** September 1, 2009
- **First CO₂ Storage:** October 1, 2009
- **Planned operation:** 1 to 5 years
Alstom’s Chilled Ammonia - CO₂ Capture Process
(20 MWe Equivalent or Approximately 1.5% of Unit Flue Gas)
CO₂ Sequestration at Mountaineer Plant Site

WMMS (Well Monitoring & Maintenance System) Building

Well Field AEP-1, AEP-2, & MW-3

CO₂ Booster Pump House and Flow Metering
Monitoring System Design
At Mountaineer Plant

- Passive Seismic/Tiltmeters
- Injection Wells
- Surface CO₂ H&S Gas Meters
- Groundwater/Soil Gas
- Crosswell Seismic
- Pressure Gauges
- Deep Monitoring Wells
- Periodic Wireline Logging
- Periodic Brine Sampling
- System CO₂ PVT Monitoring
- CO₂ Pipeline
- Slipstream Capture
- CO₂ Capture and Separation
- Injection Wells
- Confining Layers
- Liquid Supercritical CO₂
- Storage Reservoir
Copper Ridge Thin Sections
Vugular Porosity vs. Crystalline Dolomite

Sidewall core from depth of 8,177 feet just below a proposed perforation interval

Sidewall core from depth of 8,178 feet in non-perforated interval
Validation Facility Progress Update
First Year of Operation

- ~4,400 hours operation

- ~21,000 metric tons captured

- ~15,000 metric tons stored
 - ~13,500 into AEP-1
 - Copper Ridge
 - ~1,500 into AEP-2
 - Rose Run

- Process availability approaching 100%
 - Both capture and storage

- >90% CO₂ capture rate
AEP CCS Commercialization Project
1,300 MWe Mountaineer Plant, New Haven, WV

- **Scale:** Full commercial demonstration
 - 235 MWe Slipstream

- **Cost:** ~$668M

- **Funding:** CCPI Round III Selection
 - DOE awarded 50% cost share, up to $334M
 - Cooperative agreement signed in January, 2010

- **Capture:** Alstom Chilled Ammonia Process
 - ~90% CO₂ capture rate

- **Sequestration:** Battelle is Storage Contractor
 - Deep saline reservoirs
 - ~1,500,000 tons CO₂ per year
 - ~1.5 miles below the surface
 - Pipeline system with off-site wellheads

- **NEPA Process Underway**

- **Geologic Experts Advisory Group:** Actively Meeting
 - Battelle, Schlumberger, CONSOL, MIT, Univ. of Texas, Ohio State, WVU, Virginia Tech, LLNL, WV Geo. Survey, OH Geo. Survey, WV DOE, NETL, RWE, & CATF

- **Planned Operation:** Startup in second half of 2015
Remaining Challenges

Capture Process:
- CO$_2$ absorption
- Steam requirement for liberation of CO$_2$
- Power plant integration and optimization
- Parasitic load

CO$_2$ Storage:
- Property rights
- Liability
- Permit requirements
- USEPA designation of CO$_2$
- State cooperative agreements/consistency