CO$_2$ Capture and Storage
AEP’s Perspective

Gary O. Spitznogle
Manager – New Generation Development
American Electric Power
Columbus, Ohio
614-716-3671
gospitznogle@aep.com
Fuels and CO₂ Emission Rates

Note: C/H is the mass ratio of carbon to hydrogen
Efficiency and CO₂ Emission Rates

- Increasing Generation Efficiency

The graph illustrates the relationship between CO₂ emissions and heat rate, showing how different types of fuel (e.g., Bituminous, Sub Bituminous, Lignite) affect emissions. The legend notes specific conditions for Ultra Supercritical (3500psi/1100F/1100F) and Subcritical (2400psi/1000F/1000F) systems.
Carbon Intensity for Different Systems

CO₂ Reduction Necessary to Achieve NGCC Emission Levels

- NGSC – 36%
- US Coal Fleet – 62%
- USC (subbituminous) – 57%
- IGCC (bituminous) – 54%

Note: “H.R.” = Heat Rate (efficiency). Values represent typical heat rates, used here for illustrative purposes only.
CO$_2$ Capture Techniques

- **Post-Combustion Capture**
 - Conventional or Advanced Amines, Chilled Ammonia
 - **Key Points**
 - Amine technologies commercially available in other industrial applications
 - Relatively low CO$_2$ concentration in flue gas – More difficult to capture than other approaches
 - High parasitic demand
 - Conventional Amine ~25-30%, Chilled Ammonia target ~10-15%
 - Amines require very clean flue gas

- **Modified-Combustion Capture**
 - Oxy-coal
 - **Key Points**
 - Technology not yet proven at commercial scale
 - Creates stream of very high CO$_2$ concentration
 - High parasitic demand, >25%

- **Pre-Combustion Capture**
 - IGCC with Water-Gas Shift – FutureGen
 - **Key Points**
 - Most of the processes commercially available in other industrial applications
 - Have never been integrated together
 - Turbine modified for H$_2$-based fuel, which has not yet been proven at commercial scale
 - Creates stream of very high CO$_2$ concentration
 - Parasitic demand (~20%) for CO$_2$ capture - lower than amine or oxy-coal options
Alstom’s Chilled Ammonia Process
Post-Combustion Capture

(Ammonium Bicarbonate)

Flue Gas From FGD

Absorber (40-60°F)

Regenerator (203–250°F)

Conc. CO₂ To Storage

(Ammonium Carbonate – “Baker’s Ammonia”)

Solvent

CO₂
Alstom’s Chilled Ammonia Process
Post-Combustion Capture

- **Flue Gas**
 - High CO2, Low Sulfur

- **FGD**

- **Flue Gas Chiller**

- **CO2 Absorber**
 - Concentrated CO2
 - CO2 to Compression
 - CO2 Geologic Storage by AEP/Battelle

- **Booster Compressor**

- **Regenerator**

- **Final Wash**
 - Lean Reagent
 - Rich (CO2) Reagent

- **Stack**

- **Lean Reagent**
B&W’s Oxy-Coal Process

Modified Combustion Capture
FutureGen’s Water-Gas Shift Process
Pre-Combustion Capture
CO₂ injection should also be possible in shallower sandstone and carbonate layers in the region.

Rose Run Sandstone (~7800 feet) is a regional candidate zone in Appalachian Basin.

A high permeability zone called the “B zone” within Copper Ridge Dolomite has been identified as a new injection zone in the region.

Mount Simon Sandstone/Basal Sand - the most prominent reservoir in most of the Midwest but not desirable beneath Mountaineer site.
Sedimentary Rocks
A Microscopic View

Permeability much less than 0.01 mD
Shale with Extremely Low Permeability
Forms Good Caprock

Permeability 10 – 100 mD
Sandstone with Medium Permeability
Forms Good Host Reservoir Medium Cost

Permeability 100 – 1,000 mD
Sandstone with High Permeability
Forms Excellent Host Reservoir at Low Cost
Enhanced Oil Recover (EOR)
CO$_2$ Storage Key Points

- Will require multiple wells
 - Very geology-dependent
 - A 500 MW power plant could require a dozen or more wells at a spacing of several thousand feet or more

- Deep saline vs. EOR
 - Deep Saline = Permanent storage
 - EOR = CO$_2$ recycle and store…how much stays put?

- Challenges with storage
 - Not proven yet
 - Capacity and injection rates very site-specific
 - Long-term liability and ownership are points not yet resolved on federal or state level
Chilled Ammonia Technology Program

Phase 1
2009 Commercial Operation

- **Mountaineer Plant (WV)**
 - MOU (Alstom)
 - Chilled Ammonia
 - CO₂ (Battelle)

 Project Validation
 - 20 MWₑ (megawatts electric) scale (a scale up of Alstom/EPRI 5 MWₜ (megawatts thermal) field pilot, under construction at WE Energies)
 - ~100,000 tonnes CO₂ per year
 - In operation 2Q 2009
 - Approximate total cost $80 – $100M
 - Using Alstom “Chilled Ammonia” Technology
 - Located at the AEP Mountaineer Plant in WV
 - CO₂ for geologic storage

 Phase 1 will capture and sequester 100,000 metric tons of CO₂/year

Phase 2
2011 Commercial Operation

- **Northeastern Plant (OK)**
 - MOU (Alstom)
 - Chilled Ammonia
 - CO₂

 Commercial Scale Retrofit
 - ~ 200 MWₑ scale (megawatt electric)
 - ~1.5MM tonnes CO₂ per year
 - In operation 2011
 - Approx. capital $250 – $300M (CO₂ capture & compression)
 - Approx. O&M cost $12M per year
 - Energy penalty ~ 35 – 50 MW steam, 25 – 30 MW for CO₂ compression
 - Retrofit NOx Controls and Wet FGD Required: ~$225 – $300M (required for CO₂ capture equipment)
 - Located at AEP’s Northeastern Plant Unit 3 or 4 in Oklahoma
 - CO₂ for Enhanced Oil Recovery (EOR) or geologic storage

 Phase 2 will capture and sequester 1.5 Million metric tons CO₂/year
Oxy-Coal CO$_2$ Capture & Storage Project

Demonstration Scale
- 10 MW$_e$ scale
- Teamed with B&W at its Alliance Research Center and 16 other utilities
- Demo completion 4Q 2007
- AEP funding of $50k

Commercial Scale
- Retrofit on existing AEP sub-critical unit (several available)
- 150 – 230 MW$_e$ scale retrofit
- 4,000 – 5,000 tons CO$_2$ per day
- Teamed with B&W
- AEP funding of ~ $200k – $3M for feasibility study
- Feasibility study completed 2Q 2008

Combustion conversion technology for existing coal fleet -- longer lead time with enhanced viability and long-term potential