The Role of Energy Infrastructure Modeling and Analysis (EIMA) in Energy Systems Risk and Resilience

National Conference of State Legislatures
Natural Resources and Infrastructure Committee Forum

Alice Lippert
Senior Technical Advisor
Office of Electricity Delivery and Energy Reliability (OE)
US Department of Energy
December 11, 2014
Briefing Topics

• Overview of Office of Electricity Delivery and Energy Reliability
• Energy Infrastructure Modeling and Analysis Division: New Energy Systems Risk and Predictive Capability Program
• State Energy Risk Assessment Initiative
OE Organization

OE-1
Office of the Assistant Secretary
- Patricia Hoffman
 - Assistant Secretary
- Vacant
 - Principal Deputy Assistant Secretary

OE-10
Power Systems Engineering Research and Development
- Dan Ton
 - Acting Deputy Assistant Secretary

OE-20
National Electricity Delivery
- Mary Beth Tighe
 - Acting Deputy Assistant Secretary

OE-30
Infrastructure Security and Energy Restoration
- Tom Roston
 - Acting Deputy Assistant Secretary

OE-40
Energy Infrastructure Modeling and Analysis
- David Ortiz
 - Deputy Assistant Secretary

OE-50
Advanced Grid Integration
- Hank Kenchington
 - Deputy Assistant Secretary
EIMA Seeks to Advance Operations and Planning of Integrated Energy Systems

- Support catalytic systems-level research and development (R&D) focused on advanced measurement and control
 - **Advanced Modeling Grid Research (AMGR)**
 - Seeks to develop “faster than real time” tools through advanced computational and mathematical methods
 - **Transmission Reliability (TR)**
 - Seeks to advance wide area system awareness and applications
- **Build and maintain an Analytical Energy Systems Risk and Predictive Capability**
Energy Systems Risk and Predictive Capability

• Goal is to assess energy system risks and reliability in response to natural and man-made events
• Analysis products will include
 ▪ Impact and interdependency analyses
 ▪ Vulnerability and choke point analyses
 ▪ Empirical risk assessments
• Customers include – State and local officials, system operators, industry participants, and Federal response officials
• By informing key stakeholders, the benefits of the analysis are
 ▪ Improved preparedness, response, restoration, and recovery from energy system disruptions
 ▪ Timely and relevant predictions for decision making
 ▪ Energy system investments and operational improvements that appropriately value short - and long-term risks
Analytical Focus

- **Pre-event analysis**
 - Assist Federal agencies, States, and regions to plan for and manage risks to energy infrastructure
 - Analyze “at risk” energy assets and systems for reliability and resiliency
 - Produce forecast products to project downstream effects from events
 - Host modeling and analysis workshops to help stakeholders improve decision making for mitigation and response plans

- **Support for response and recovery**
 - Provide near real-time products and analytic support for the Federal emergency response and recovery mission
 - Provide analysis products to State and local officials, and energy owners and operators to improve actions during energy events
 - Assess wide area impacts to energy supplies and infrastructure to estimate damage and facilitate recovery operations

- **Lessons learned and post-event analysis**
 - Produce post-event products which analyze impacts from large scale energy events
 - Assess the performance of risk assessment and forecasting models
 - Quantify lessons learned to improve models and future forecasts
Seasonal Threats and Areas of Interest

<table>
<thead>
<tr>
<th>Seasonal extreme weather and natural disasters</th>
<th>Long-term risks and security</th>
<th>Events of national significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer – Heat waves, wildfires, drought, and severe storms</td>
<td>Climate change</td>
<td>Political conventions</td>
</tr>
<tr>
<td>Fall – Hurricanes and drought</td>
<td>Cyber security</td>
<td>Presidential Inaugurations</td>
</tr>
<tr>
<td>Winter – Cold weather, ice storms, and heavy snow</td>
<td>Physical security</td>
<td>Super Bowls</td>
</tr>
<tr>
<td>Spring – Flooding and tornadoes</td>
<td>Latent and aging infrastructure</td>
<td>International summits</td>
</tr>
<tr>
<td>Earthquakes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Energy System Challenges and Analytic Drivers

• Accommodating renewable and distributed resources
• Complying with environmental regulations
• Providing services reliably in the face of natural disasters and man-made disruptions
• Operating with tighter margins and interdependencies among sectors
• Responding quickly as loads respond to prices and variable generation increases
• Near- and long-term risks associated with global climate change and extreme weather
Technical, Economic, and Policy Questions

- What is the likelihood of customers losing power?
- What would be the likely length of the outage?
- What energy assets could be impacted?
- What is the scope of impact to the electric transmission system? Distribution system? Generators? Customers?
- What is the scope of impact to NG and Petroleum assets?
- Are there downstream effects or interactions?
Partnerships Are Critical to the Success of EIMA

- Energy system planning and risk management occurs largely at the State level
- Partners
 - Ensure that EIMA’s work is relevant to challenges that system owners, operators, and responders face
 - Provide essential knowledge and insight regarding regional nature of risk and potential mitigating actions
 - Augment DOE’s analytical capabilities
 - Perform key analyses of infrastructure risk, hypothesis testing, model building, and implement actions
State Energy Risk Assessment Initiative

• Working Group members: DOE, NCSL, NASEO, NARUC, and NGA

• Goals:
 ▪ Increase States’ awareness of risk considerations relating to energy systems and infrastructure to better prepare them to make more informed decisions
 ▪ Inform and assist States on available analytical capabilities and resources for identifying and evaluating energy infrastructure risks
 ▪ Provide a suite of scalable, easily-applied analytical tools, methods, and processes to enable States to better assess risks to energy systems and assets.
Key Objectives and Activities

• Determine State energy risk assessment needs
 ▪ Conduct focused, targeted interviews with key State representatives who are involved in evaluation of risk-related activities
 ▪ Identify key stakeholders that are critical to success and identify partnership gaps

• Assess current practices in State-level energy risk analysis
 ▪ Conduct review of Energy Assurance Plans (EAPs) to determine and summarize extent of States’ risk-related activities
 ▪ Summarize and identify current common practices
 ▪ Identify jurisdictional priorities

• Identify tools, methods, and processes to evaluate risk related to energy assets and systems
 ▪ Identify readily available, low or no-cost, best-of-breed risk categorization and visualization tools and assess against State requirements

• Engage with key stakeholders (across entire risk analysis development cycle) to enhance information sharing and collaboration
Working Group Near-term Activities

• Utility Investment and Resiliency Simulation (NARUC)
• Survey members regarding how THIRA guidelines are applied to energy-specific risks (NGA)
• Convene group of State energy experts to determine best practices and available data and co-sponsor the Annual Winter Energy Outlook Conference (NASEO)
• Workshop/webinar for legislators in collaboration with Governors’ offices and Energy/PUC officials (NCSL)
• Development of State energy risk assessment tool kit (All)
• Energy Risk Assessment Workshop, Spring 2015 (All)
Thank You!

Alice Lippert, DOE/OE
Alice.Lippert@hq.doe.gov